http://xgboost.readthedocs.io/en/latest/build.html
https://archive.ics.uci.edu/ml/datasets.html
https://keras.io/preprocessing/image/#imagedatagenerator
https://keras.io/
http://peterroelants.github.io/posts/neural_network_implementation_intermezzo02/
http://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
http://cs231n.github.io/
http://scs.ryerson.ca/~aharley/vis/conv/flat.html
http://ais.uni-bonn.de/papers/icann2010_maxpool.pdf
https://docs.gimp.org/en/plug-in-convmatrix.html
https://cs.nju.edu.cn/wujx/paper/CNN.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/
http://iamtrask.github.io/2015/07/27/python-network-part2/
http://iamtrask.github.io/
https://stats.stackexchange.com/questions/154879/a-list-of-cost-functions-used-in-neural-networks-alongside-applications
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://yann.lecun.com/exdb/
http://mlkernels.readthedocs.io/en/latest/kernels.html
https://cran.r-project.org/
https://www.rstudio.com/
https://www.continuum.io/downloads
https://www.superdatascience.com/machine-learning/
https://www.superdatascience.com/sds-002-machine-learning-recommender-systems-and-the-future-of-data-with-hadelin-de-ponteves/